A RARE CAUSE OF FANCONI SYNDROME - DENT’S DISEASE

DR.G.KALAIVANI
Dept. of Pediatric Nephrology
Mehta Children’s Hospital
History

- 2 years 10 months male child born to consanguineous parents (9.06.2012)
- Birth Wt: 2.8 kg
- Presented elsewhere at 15 months of age with delayed milestones, generalized bony deformities and found to have glycosuria
Contd...

- Diagnosed as Vitamin D deficiency rickets
- Treated outside with Vit.D and Ca supplements for 6 months
- In view of persistent bony deformities child was referred here.
ANTHROPOMETRY

- Height: 76 cm (<10th percentile)
- Weight: 9.5 kg (<10th percentile)
- Head circumference: 46 cm (<50th percentile)
Examination

- Alert
- No edema
- Normotensive
- Genuvalgum
- Widening of wrist
- Dentition normal
- Eyes normal
- Systems normal
Investigations

<table>
<thead>
<tr>
<th>Date</th>
<th>S.Cr</th>
<th>Na</th>
<th>K</th>
<th>HCO₃⁻</th>
<th>Cl</th>
<th>Alb</th>
<th>Ca</th>
<th>P</th>
<th>SAP</th>
<th>Vit.D</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.6</td>
<td>2.9</td>
<td>1372</td>
<td>5.9</td>
</tr>
<tr>
<td>16.5.14</td>
<td>0.3</td>
<td>139</td>
<td>3.4</td>
<td>17</td>
<td>108</td>
<td>9.0</td>
<td>2.7</td>
<td></td>
<td>921</td>
<td></td>
</tr>
</tbody>
</table>

PTH : 71.6 (16.5.14)
RBS : 85
Urine analysis

<table>
<thead>
<tr>
<th>DATES</th>
<th>2.7.13</th>
<th>17.5.14</th>
<th>4.9.14</th>
<th>8.3.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP GR</td>
<td>1.010</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PH</td>
<td>7.0</td>
<td>7.2</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Proteins</td>
<td>++</td>
<td>+++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Sugar</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>++++</td>
</tr>
<tr>
<td>PC</td>
<td>10</td>
<td>OCC</td>
<td>3</td>
<td>OCC</td>
</tr>
<tr>
<td>RBC</td>
<td>2</td>
<td>6-8</td>
<td>4</td>
<td>Nil</td>
</tr>
<tr>
<td>Ca/ Cr</td>
<td>1.2</td>
<td>1.50</td>
<td></td>
<td>0.36</td>
</tr>
</tbody>
</table>
USG abdomen (3.9.13): RK - 6.1 cms, LK - 6.0 cms
Increased cortical echoes
X-ray wrist (2.9.13)- features of rickets
X-Ray Ankles
SUMMARY OF FINDINGS

- Hypocalcemia
- Hypophosphatemia
- Increased alkaline phosphatase
- Metabolic acidosis
- Vitamin D deficiency
- Hypercalciuria
- Glycosuria
- Proteinuria
- Increased PTH
- X-ray features of Rickets
- Increased cortical echoes by USG
Treatment

- Vit D supplementation
- Alkali therapy
- Phosphorus
After Treatment

<table>
<thead>
<tr>
<th>Date</th>
<th>S.Cr</th>
<th>Na</th>
<th>K</th>
<th>HCO₃</th>
<th>Cl</th>
<th>Alb</th>
<th>Ca</th>
<th>P</th>
<th>SAP</th>
<th>VitD</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9.13</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.9</td>
</tr>
<tr>
<td>16.5.14</td>
<td>0.3</td>
<td>139</td>
<td>3.4</td>
<td>17</td>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td>9.0</td>
<td>2.7</td>
</tr>
<tr>
<td>4.9.14</td>
<td>138</td>
<td></td>
<td>4.1</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.2</td>
<td>17.7</td>
</tr>
<tr>
<td>27.9.14</td>
<td>139</td>
<td></td>
<td>4.1</td>
<td>20</td>
<td>102</td>
<td>3.8</td>
<td></td>
<td>8.6</td>
<td>3.8</td>
<td>560</td>
</tr>
<tr>
<td>8.3.15</td>
<td>0.4</td>
<td>137</td>
<td>4.3</td>
<td>21</td>
<td>108</td>
<td>4.0</td>
<td>9.7</td>
<td>4.7</td>
<td>584</td>
<td>29.40</td>
</tr>
</tbody>
</table>
After Treatment

<table>
<thead>
<tr>
<th>Date</th>
<th>S.Cr</th>
<th>Na</th>
<th>K</th>
<th>HCO₃</th>
<th>Cl</th>
<th>Alb</th>
<th>Ca</th>
<th>P</th>
<th>SAP</th>
<th>VitD</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9.13</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.5.14</td>
<td>0.3</td>
<td>139</td>
<td>3.4</td>
<td>17</td>
<td>108</td>
<td></td>
<td></td>
<td>9.0</td>
<td></td>
<td>921</td>
</tr>
<tr>
<td>4.9.14</td>
<td>138</td>
<td></td>
<td>4.1</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>618</td>
<td>17.7</td>
</tr>
<tr>
<td>27.9.14</td>
<td>139</td>
<td>4.1</td>
<td>20</td>
<td>102</td>
<td></td>
<td>3.8</td>
<td>8.6</td>
<td>3.8</td>
<td>560</td>
<td></td>
</tr>
<tr>
<td>8.3.15</td>
<td>0.4</td>
<td>137</td>
<td>4.3</td>
<td>21</td>
<td>108</td>
<td>4.0</td>
<td>9.7</td>
<td>4.7</td>
<td>584</td>
<td>29.40</td>
</tr>
</tbody>
</table>

Beta-2-microglobulin >20,000 (670-2143ng/ml)
Discussion

Introduction

- X-linked recessive renal Fanconi syndrome

Synonyms:
- Dent disease I
- X-LR hypercalciuric hypophosphataemic rickets
- LMWP with hypercalciuria and nephrocalcinosis
- Dent disease II

- Caused by mutation in CLCN5 gene which encodes the electrogenic chloride / proton exchanger located in chromosome Xp11-22
Disruption or mutations in CIC-5 impairs or alters membrane trafficking via receptor mediated endocytic pathway that involves megalin and cubulin and significantly reduce or eliminate the chloride transport.
Pathophysiology

- Selective urinary loss of LMW proteins in Dent’s indicates that glomerular filter is undamaged and only problem in proximal tubular endocytosis
- CIC-5 protein seems to be critical for acidification of the endosomes that participate in solute reabsorption and membrane recycling in PTC
Contd...
Role of CLC-5

- CLC-5 is a 2Cl⁻/H⁺ exchanger rather than a chloride channel which will facilitate acidification.
PATHOPHYSIOLOGY

Proximal Tubule

LMW Proteins

Urine

Blood

Recycling Endosome

Early Endosome

Lysosome

ATP

ADP+Pi

H^+

2CF

CIC-5

Knock-out

H^+

ATP

CIC-5^-
Acidification of the endosomes results in the dissociation of receptor-ligand complexes. Megalin and Cubilin are then recycled to the apical membrane. The ligand is transported to lysosomes for degradation. Impaired acidification leads to the mutation of ClC-5 ability.
Clinical phenotype

- Dent’s 1 - CLC 5 gene mutation - 60%
- Dent’s 2 - OCRL1 gene mutation 15%
- Males are affected and females have minor phenotype
- Have variable manifestation of proximal tubule dysfunction (partial Fanconi)
- 10% of patients denovo mutation
Clinical and biochemical characteristics of Dent’s Disease patients with CLCN5 mutation

<table>
<thead>
<tr>
<th>Clinical/biochemical characteristics</th>
<th>Consistency of presence in Dent’s disease patients with mutations in CLCN5(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM WP</td>
<td>100</td>
</tr>
<tr>
<td>Aminoaciduria</td>
<td>44</td>
</tr>
<tr>
<td>Glycosuria</td>
<td>19</td>
</tr>
<tr>
<td>Hypophosphatemia</td>
<td>32</td>
</tr>
<tr>
<td>Hypercalciuria</td>
<td>89</td>
</tr>
<tr>
<td>Nephrocalcinosis</td>
<td>76</td>
</tr>
<tr>
<td>Nephrolithiasis</td>
<td>41</td>
</tr>
<tr>
<td>Renal failure</td>
<td>42</td>
</tr>
<tr>
<td>Rickets/osteomalacia</td>
<td>33</td>
</tr>
<tr>
<td>Hematuria</td>
<td>94</td>
</tr>
<tr>
<td>Concentrating defect</td>
<td>82</td>
</tr>
</tbody>
</table>
PTH

Regulates Na coupled phosphate cotransporter (NaPi-IIa)

Uptake of phosphate in PT

PTH not reabsorbed. Accumulates in distal part of PT

Increase PTH in urine

Stimulation of apical PTH receptors in late proximal tubular cells

Internalization & degradation of NaPi-IIa from the membrane

Phosphaturia

PTH is filtered through glomerulus and removed from urine by megalin dependent endocytosis
Urinary loss of vitamin D binding protein leads to bone defects.

Nephrolithiasis:

i) Due to deceased renal function

ii) Impaired handling of Ca phosphate and Ca oxalate crystals in CD
Contd….

- **Glucosuria and aminoaciduria**: failure to recycle their transporters to apical membrane

- **ESRD**: It has been found potentially bioactive hormones PTH, insulin, IG-F in tubular fluid contributes to hypercalciuria and interstitial fibrosis and progressive renal failure.
Diagnosis

- Dent’s Disease is probably under-diagnosed
- Presence of LMWP and at least one of the variable characteristics or a positive family history
- Clinical diagnosis is supported by history of X-linked inheritance of renal Fanconi syndrome
Diagnostic criteria

- Presence of all three of the following criteria:
 - LMWP – increased β2 microglobulin (1 gm/day), Clara cell protein, RBP by at least 5 fold increase
 - Hypercalciuria > 4 mg/kg or Urine Ca/Cr > 0.25 mg/mg
 - One of the following:
 - Nephrocalcinosis
 - Kidney stones
 - Hematuria
 - Hypophosphatemia
 - Renal insufficiency
Treatment

- Supportives - generous fluid intake
- Vit D - indicated only with clinical bone disease
- Phosphate supplements
- Thiazide
- Citrate supplementation
- Genetic counseling
TAKE HOME MESSAGE

- Male Child
- Consanguinity
- Early onset rickets
 - Persistent Hypercalciuria
 - Early biochemical response
 - Parenchymal changes
 - 2 microglobulin